If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+2x-352=0
a = 1; b = 2; c = -352;
Δ = b2-4ac
Δ = 22-4·1·(-352)
Δ = 1412
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1412}=\sqrt{4*353}=\sqrt{4}*\sqrt{353}=2\sqrt{353}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{353}}{2*1}=\frac{-2-2\sqrt{353}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{353}}{2*1}=\frac{-2+2\sqrt{353}}{2} $
| x+25=-42 | | 16=50-2x | | 2(x+13)=x+22 | | x+22=2(x+13) | | x+22=x+13 | | 3l/5=5 | | 710x+8-5=9 | | 2(x+15)=x+22 | | Y-1/5=y+1/3 | | 4+h=92 | | 2x²+21x-50=0 | | 123=6(-2m+5)-3 | | -30t^2+410t-330=0 | | (2z/10)-(3z/10)=4 | | (z/5)-(3z/10)=4 | | Y-1÷5=y+1÷3 | | 9x+23=20x+6 | | 330t-30t^2=330-80t | | -24=u•6 | | 1.25*x+39.99=1.75*x+25.99 | | 6x+60=3x | | 2(1/2x+5)=2x-6 | | 6(-25)v+7=8(-25)-6v | | Y=500000+8x | | Y=5000000+8x | | 2w+3(-40)=6w+(-40/2) | | x/2=(x-42)2 | | 5=1.2x+x | | Y=7x-10.Y=-3 | | x^2-14x+33=240 | | x+56=x+146 | | -8(x-1)=50 |